Iridium(ı), -(ııı), and -(v) Complexes of an O-Donor Ligand in Alkyne Hydrosilylation

Robin S. Tanke and Robert H. Crabtree

Yale Chemistry Department, 225 Prospect St., New Haven, CT 06511, USA

The O-donor ligand $C(Ph_2PO)_3^-$ (triso) stabilises iridium-(i), -(iii), and -(v) species such as $[(triso)IrH_2(SiMePh_2)_2]$; the complexes catalyse the net *anti*-addition of silanes to alkynes.

P- and *C*-Donor ligands dominate organometallic chemistry and homogeneous catalysis. The harder *O*-donor ligands are rarely able to stabilise organometallic compounds,¹ or promote catalytic activity,² even though metal crystallites and organometallic precursors supported on metal oxide surfaces are often catalytically active.³

We find that Grim's⁴ Na[C{Ph₂PO}₃] (= Na[triso]) reacts with [Ir(coe)₂Cl]₂ (coe = cyclo-octene) in tetrahydrofuran (THF) at 25 °C for 4 h to give [(triso)Ir(coe)₂] (1a) (76%).† Complex (1a) in hexanes reacts with C_2H_4 (1 atm; 1 h) to give [(triso)Ir(C_2H_4)₂] (1b) (65%), isolated by cooling to -10 °C. Complexes (1a) and (1b) probably have the η^2 -triso structure shown in Scheme 1 [³¹P NMR (CD₂Cl₂; 85% H₃PO₄ reference): δ 45 (2P, d, J_{PP} 21 Hz) and 26 (1P, t, J 21 Hz)].

Complex (1b) reacts with Ph₃SiH in CH₂Cl₂ for 30 min to give [(triso)Ir(C₂H₄)H(SiPh₃)] (2)⁵ (42%). ¹H NMR shows the hydride at δ –24.8 [³¹P NMR (CD₂Cl₂): δ 23.5 (2P) and 48.5 (1P, br)]. The triso is probably η^3 because Ir^{III} hydrides are usually 18 electron. The less bulky and more donating silane Ph₂MeSiH reacts with (1b) to give [(triso)IrH₂-(SiPh₂Me)₂] (3) (48%). Such double oxidative additions are rare. Complex (3) has a classical 7-co-ordinate structure because the ¹H NMR of [(triso)IrHD(SiPh₂Me)₂] shows no HD coupling, ruling out (η^2 -H₂) structures, ⁵ and (3) shows no SiH coupling ruling out (η^2 -HSiR₂R') structures. ⁶ Complex (3) is fluxional, showing only one ³¹P NMR resonance at δ 23.6. Ir^V species are rare, although the pentamethylcyclopentadienyl analogue of (3) is known.

† The compounds were characterized by microanalytical and ^{1}H , ^{13}C , and ^{31}P NMR and IR spectral data: (1a) ^{1}H NMR (CDCl₃; 250 MHz) δ 7.9—7.7 (m, 8H, Ph), 7.4—7.0 (m, 22H, Ph), and 1.2—2.0 (m, 28H, coe); (1b) ^{1}H NMR δ 7.75—7.55 (m, 8H, Ph), 7.4—7.0 (m, 22H, Ph), and 2.5 (s, 8H, ethylene); (2) ^{1}H NMR (CD₃C₆D₅) δ 7.95—7.70 (m, 18H, Ph), 7.0—6.8 (m, 27H, Ph), 3.31 (m, 2H, ethylene), 2.30 (m, 2H, ethylene), and -24.78 (s, 1H, Ir–H); (3) ^{1}H NMR (C₆D₆) δ 8.0 (br., 4H, Ph), 7.64—7.61 (m, 16H, Ph), 7.06—7.03 (m, 13H, Ph), 7.02—6.7 (m, 17H, Ph), 0.88 (s, 6H, Me), and -20.96 (s, 2H, Ir–H).

Complexes (1)—(3) are all catalytically active, even at ambient temperatures. For example, they catalyse the hydrosilylation of PhC \equiv CH with Et₃SiH [70 turnovers/h at 25 °C for (1a) in CH₂Cl₂]. Unexpectedly, the vinylsilane (4) is formed by a net *anti*-addition of SiH to the C \equiv C bond to give the thermodynamically less stable *cis*-isomer (99.2% *cis*). Prolonged contact with the catalyst leads to isomerisation to the more stable *trans*-isomer. Net *trans*-addition to an alkyne has been observed previously⁸ but in no case has a *cis/trans* ratio greater than 5 been reported.‡ Isotope labelling (Scheme 2) showed that the methyne CH is not scrambled in the reaction.

‡ I. Ojima (Stony Brook) has unpublished data on a system which gives ca. 95% anti-addition (personal communication, 1990).

PhC
$$\equiv$$
CD + R₃SiH $\xrightarrow{\text{Ph}}$ $\xrightarrow{\text{SiR}_3}$ (4)

Scheme 2

One mechanism (Scheme 3) is consistent with all the observations and resembles one proposed previously. In an intermediate like (2), the alkyne inserts into the M–Si bond. The resulting 16-electron vinyl (5) rearranges to the sterically less hindered isomer (7), which leads to the observed product on reductive elimination. Green 10 has noted that 16e vinyls rearrange readily to the η^2 -form and so (6) provides a reasonable intermediate for the conversion of (5) to (7). Further work will be required to test this proposal.

O-Donor ligands can thus stabilise iridium-(1), -(III), and -(v) and promote high catalytic activity. The almost exclusive net *anti*-addition of silane to the C≡C bond should be synthetically useful.

We thank the NSF for funding and P. Demou for experimental assistance.

Received, 12th April 1990; Com. 0/01645D

References

1 R. E. LaPointe, P. T. Wolczanski, and G. D. Van Duyne, Organometallics, 1985, 4, 1810; M. H. Chisholm, D. M. Hoffman, and J. Huffman, Chem. Soc. Rev., 1985, 14, 69; C. J. Besecker and W. G. Klemperer, J. Am. Chem. Soc., 1980, 102, 7598; V. W. Day, C. J. Besecker, and W. G. Klemperer, ibid., 1982, 104, 6158; V. W. Day, C. W. Earley, W. G. Klemperer, and D. Maltbie, ibid., 1985, 107, 8261; D. J. Edlund, R. J. Saxton, D. K. Lyon, and R. G. Finke, Organometallics, 1988, 7, 1692; W. Kläui, A. Müller, W. Eberspech, R. Boese, and I. Goldberg, J. Am. Chem. Soc., 1987, 109, 164; F. J. Feher, ibid., 1986, 108, 3851; V. W. Day, C. J. Besecker, and W. G. Klemperer, Organometallics, 1985, 4, 564; C. J. Besecker and W. G. Klemperer, J. Organomet. Chem., 1981, 205, C31.

- 2 Except in cases where dissociation of O-donor ligand is evident and homogeneity ambiguous: A. J. Cornish, M. F. Lappert, G. L. Filatos, and T. A. Nile, J. Organomet. Chem., 1979, 172, 153.
- 3 Yu. I. Yermarkov, B. N. Kuznetsov, and V. Zakharov, 'Catalysis by Supported Complexes,' Elsevier: Amsterdam, 1981; D. G. H. Ballard, Adv. Catal., 1973, 23, 263; J. Schwartz, Acc. Chem. Res., 1985, 18, 302 and references cited; B. C. Gates and H. H. Lamb, J. Mol. Catal., 1989, 52, 1.
- 4 S. O. Grim, S. A. Sangokoya, I. J. Colquhoun, W. McFarlane, and R. K. Khanna, *Inorg. Chem.*, 1986, 25, 2699.
- 5 A few other ethylene silylhydrides are known: G. Bellachioma, G. Cardaci, E. Colomer, R. J. P. Corriu, and A. Vioux, *Inorg. Chem.*, 1989, 28, 519; J. Ruiz, P. O. Bentz, B. E. Mann, C. M. Spencer, B. F. Taylor, and P. M. Maitlis, *J. Chem. Soc., Dalton Trans.*, 1987, 2709; S. B. Duckett, D. M. Haddleton, S. A. Jackson, R. N. Perutz, M. Poliakoff, and R. K. Upmacis, *Organometallics*, 1988, 7, 1526.
- 6 G. J. Kubas, R. R. Ryan, B. I. Swanson, P. J. Vergamini, and H. J. Wasserman, J. Am. Chem. Soc., 1984, 106, 451.
- 7 U. Shubert, J. Müller, and H. G. Att, Organometallics, 1987, 6, 469.
- 8 M.-J. Fernandez and P. M. Maitlis, J. Chem. Soc., Dalton Trans., 1984, 2063.
- K. A. Brady and T. A. Nile, J. Organomet. Chem., 1981, 206, 299;
 H. M. Dickers, R. N. Haszeldine, A. P. Mather, and R. V. Parish, ibid., 1978, 161, 91;
 I. Ojima, M. Kumagai, and Y. Nagai, ibid., 1974, 66, C14;
 D. C. Apple, K. A. Brady, J. M. Chance, N. E. Heard, and T. A. Nile, J. Mol. Catal., 1987, 42, 195.
- 10 S. R. Allen, R. G. Beevor, M. Green, N. C. Norman, A. G. Orpen, and I. D. Williams, J. Chem. Soc., Dalton Trans., 1985, 435.